
4x4 Gene-Type BitLife Hackathon Must

Read Script​

Tutorial​

Note: Currently, the server-side evolution tool only supports Windows systems.​

Step 1: After you download the code, you can see the file directory as follows. In the example, I

downloaded the script tool to E:\evo​

Step 2: Double-click to open main.exe without additional operations. When you see the

following screen, it means that the script tool is running normally.​

When you see his prompt as "Not meeting the conditions,abandon" means the current

random genotype. If the conditions are not met, it will be discarded and the next random

combination evolution will be carried out.​

Step 3: If a genotype that meets the expectations is generated, a file named resultX.txt will be

generated in the same directory of the script tool. After opening it, you can see that it contains

the binary string that meets the conditional genotype and 30DAY. hashrate value​

--Under the current file, as shown below:​

Open result1.txt to see the genotype information that meets the conditions. Each line

represents a genotype that meets the conditions.Whenever a new genotype that meets the

conditions is calculated, it will be appended to the file.​

**Do not delete the generated resultX.txt. If you delete the file by mistake while the program

continues to execute, it will not affect the process of the program. When a new genotype that

meets the conditions is found, the file will still be generated and the output will satisfy the

conditions. genotype information, but previously deleted genotype information may not be

retrieved.​

Other questions​

Question 1: Then how do I know that I have found the genotype that meets the requirements?​

Answer: If resultX.txt does not appear, it means that no genotype that meets the conditions

appears (the condition is: 30Day Hashrate>18329471)​

Question 2: If I obtain a genotype that meets the requirements, how do I submit the results?​

Answer: If you get a genotype that meets the requirements​

**Users with development capabilities can submit your results through the following methods​

After a genotype that meets the requirements appears, the submission method is the interface

request method:​

Interface request address:
https://factoryapi.cellula.life/hashRateRank/submitGene
Request method: POST
Request parameters:
{
 "ethAddress": "0x21eb2869916075A3580aE0C9fAFEcB8833BDssss",
 "numStr":
"000000000000000000000000000000000000011001101000000000000000000000000000000000
00111000000000000000",
 "discordId":"discord id"
}
Note:
ethAddress: Ethereum wallet address
numStr: genotype binary string
discordId: discord id

1

2
3
4
5
6

7
8
9
10
11
12

**Users without development capabilities can submit through the synthesis platform and

intercept every 12 strings of "010..." in the text to obtain a genotype dot matrix diagram. An

example is as follows:​

1. Wrap every 12 lines, and you can get something similar to the picture below.​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 1 1 0 0 1 1 0 1 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

0 0 0 0 0 0 1 1 1 0 0 0​

0 0 0 0 0 0 0 0 0 0 0 0​

2. In cellula, each bitlife is composed of 2 to 16 BitCells, and each cell is composed of different

cell points. In the abstract, each BitCell is a 3*3 square grid with blank areas. area with cells​

3. We treat the area with cells in the code as 1, and the area without cells as 0. Write every 3

horizontally and 3 vertically into a grid, and you can parse the "0101..." string. The example is

as follows​

000000000000000000000000000000011001101000

00111000000000000000​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 1 1​

0 0 0​

0 0 0​

0 0 1​

0 0 0​

0 0 0​

1 0 1​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

1 1 1​

0 0 0​

0 0 0​

0 0 0​

0 0 0​

Question 3: How do I speed up evolution?​

Answer: Our script tool is currently open source, and the warehouse address is:

https://github.com/cellulalifegame/conway-server. For users with development capabilities, you

can find this line in the Main.java file under src in the project directory. code, modify and

execute the code.​

//This line of code is to query the number of CPU cores of the current
machine. The current number is divided by 3 and rounded up.
//For example, if the core number of your computer is 10, it will occupy 3
cores for calculation. You can change this divisor to increase/decrease the
number of CPU cores invested.
int threadCount = Runtime.getRuntime().availableProcessors() / 3;

1

2

3

Other calculation tools​

Code link 1: https://github.com/cellulalifegame/conway-server​

Code link 2: https://github.com/cellulalifegame/conway-front​

https://github.com/cellulalifegame/conway-server.
https://github.com/cellulalifegame/conway-server
https://github.com/cellulalifegame/conway-front

Google plug-in tool example:​

1. Download it, open the project folder and double-click index.html​

After opening the page, click Run to automatically start evolution.​

Eligible genotypes will automatically be recorded in the list below​

Submit method api​

After a genotype that meets the requirements appears, the submission method is the interface

request method:​

Interface request address:
https://factoryapi.cellula.life/hashRateRank/submitGene
Request method: POST
Request parameters:
{
 "ethAddress": "0x21eb2869916075A3580aE0C9fAFEcB8833BDssss",
 "numStr":
"000000000000000000000000000000000000011001101000000000000000000000000000000000
00111000000000000000",
 "discordId":"discord id"
}
Note:
ethAddress: Ethereum wallet address
numStr: genotype binary string
discordId: discord id

1

2
3
4
5
6

7
8
9
10
11
12

